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Symbolic Analysis of Nonlinear Differential Systems

Goal: Given a system of equations (and possibly inequations), extract
from them as much information on its solutions as possible without
(generally impossible) explicit integration/solving and/or "simplify /
rewrite" the equations for the further numerical solving.
@ Consistency
@ Dimension of the solution space (arbitrariness in a general
analytic solution of DEs)
@ Elimination of a subset of variables
@ Reduction to a finite subset of "smaller" problems with disjoint
solution set
@ Well posing of initial value problem (for PDEs)
@ Computation of hidden constraints for dependent variables of DEs
@ Rewriting into a triangular form
@ Check whether an equation is valid for all common solutions of a
system of equations

Universal algorithmic method (tool): Thomas decomposition



Input differential system

The fully algorithmic Thomas decomposition is applicable to a set of
finite-order partial differential equations (PDEs) of the form

| othue N\
pi X‘|,...,Xn,u1,...,Um,...,m,... — 9 I = ,...,S,

where k =1,...,m and ux = uk(xq,...,Xn). It is assumed that p; are
polynomials in their arguments.

The decomposition also allows enlargement of PDEs with a set of
inequations

oty .
q,'<X1,...,Xn;U'],...,Um,...,M7... #O, I:1,...,t,

where g are also polynomials in their variables.
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(Cauchy-)Kovalevskaya theorem (1875)

Theorem
Let polynomials p; read
oM uj 8f1+"'+f"uk
pi = nl_—F,-<x1,...,xn;u1,...,um,,..,..,..,
ox Xy - - axlr

1
where j; +-- -+ jn = j < n;, j1 < n; and all the functions F; (not necessarily polynomial) are
analytic in a neighborhood of the point
6’1 +' : '+/n uk
X =x, ug = up, rl?;h,...,j,, e
oxq' - 0xy

Then in some neighborhood of the point (x?, . .., x3) the PDE systemp; =0 (i =1,...,s) has
a unique analytic solution satisfying the initial conditions

(ibk=1,...,m=s).

Xy :x? s Xn=x3

U = dk(X2, X3, - -, Xn),

ay

o = ki1(Xe Xa, -, Xn)

.......................................... fOI’X1 :X‘?7 k:1"">m7
a1y

ax”k“k = bk n—1 (X2, X3, - - -, Xn)

where all ¢ are arbitrary analytic functions of their arguments in a neighborhood of the point
(X2, ..., x9) such that they take at this point the initial values.

4
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Generalizations

@ E.Cartan (1899,1901) - exterior differential systems generated by
1-forms (Pfaffian systems) and notion of involution (2004)

@ Riquier-Janet theory:
Ch.Riquier (1910) - orthonomic (quasilinear) and passive PDE
systems
M.Janet (1920,1929) - theory of Janet monomials

@ E.Kahler (1934) - extension of the Cartan theory to any differential
ideal generated by an exterior differential system.

@ J.Thomas (1937) - disjoint decomposition of polynomially
nonlinear PDE systems into passive subsystems

@ V.Gerdt and Yu.Blinkov (1998) - theory of involutive monomial
divisions and involutive bases

@ T.Béachler,V.Gerdt,M.Lange-Hegermann and D.Robertz (2012)
algorithmization of algebraic and differential Thomas
decomposition and implementation of the last decomposition in
Maple (M.Lange-Hegermann).
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Differential polynomial ring

The set of all expressions potentially occurring as p; and g; is the smallest polynomial ring
containing all partial derivatives of uy, up, ..., um, namely the differential polynomial ring

R:=Q{ur,....um} == Q(uk)y | k €{1,....m}, J € (Z20)"].

Here the differential indeterminate ux = (uk) o, ...,0) represents the unknown function

yee

uk(xq, ..., Xn) with the same name and, more generally, (uk), for the multi-index
J=(f1,)2,---,Jn) € (Z>0)" represents the partial derivative

Qh izt Hiny,
oxox ... oxl
The ring R is closed under the derivations 94, ..., On acting as
8/ (Uk)J = (uk)J+1,' ) J+ 1= (h FE 7jf71 7jf + 17jf+1 3. 7j’7)'
The coefficient field Q of rational numbers can also be replaced with a larger field containing Q
admitting n derivations of which then the derivations 9; are extensions to R. For example, the
coefficient field can be chosen to be the field Q(xq, . .., xp) of rational functions in xq, ..., xn with

the usual derivations, if the system to be dealt with consists of PDEs with rational function
coefficients.
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Differential ideal
Given a system of partial differential equations
p1:05 P2207 L) pS:Ov pie'q7
the minimal subset of R which contains P := {p; | i =1, ..., s} and is closed under taking linear
combinations of its elements with coefficients in R and under differentiation is called differential

ideal of R generated by P. A differential ideal of R which contains for each of its elements p also
all differential polynomials in R of which a power is equal to p is said to be radical.

The differential ideal of all p € R which vanish under substitution of any analytic solution of a
PDE system is a radical differential ideal. The following important theorem establishes a
one-to-one correspondence between radical differential ideals of R and solutions sets (with
complex analytic functions on suitable domains) of PDE systems which are defined over R.

Theorem (Nullstellensatz of Ritt-Raudenbush)

Let | be the differential ideal of R generated by the left hand sides py, po, ..., ps of a PDE
system. If a differential polynomial p € R vanishes under substitution of any analytic solution of
p1 =0, ..., ps =0, then some power of p is an element of I.

Radical differential ideals are finitely generated in the following sense.

Theorem (Basis Theorem of Ritt-Raudenbush)

For every radical differential ideal | of R there exists a finite subset B of | such that | is the
smallest radical differential ideal of R which contains B.
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Ranking
A ranking > on R is a total ordering on
Ou = {(u)y|ke{l,....m}, Je(Z>o)"}
such that the following two conditions are satisfied.
@ Forallie{1,....,n}and k € {1,..., m} we have 9 ux = Ux.

@ Forallie{1,....,n}, k, I e{1,...,m}, K, L € (Z>0)", the implication
(u)k = () = 9 (uk)k = 9i (uy)L holds.

Of special interest to us is a Riquier ranking such that

Qi+
8x{‘ ~-~8x{,"
we have 61U = dou if the total differentiation order in §1 u is greater than the

one in dou for any dependent variable u, and the following condition holds for
all dependent variables v, w:

V51,5266:_{

j1a"'ajn€Z20}

NV =0V — W= dow.
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Reduction |
Let a ranking > on R be fixed.

@ Every p € R\ 0 involves a symbol (uk), which is maximal with
respect to >. is called leader of p and denoted by 1d(p) .
@ The coefficient of the highest power of 1d(p) in p is called initial of
p and denoted by init(p).
@ The formal derivative of p with respect to 1d(p) is called the
separant of p and denoted by sep(p).
Consider two non-constant polynomials p; and p. in R. If

1d(p1) = 1d(p2) we consider the degrees d; and d» of p; and p» in
v :=1d(p1), respectively. If d; > db, then

init(p2) py — init(py) v =% p,

is either constant, or has a leader which is ranked lower than v, or has
the same leader, but has smaller degree in 1d(p;) than p;.
If di < db, no reduction of p;y modulo p, is possible.
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Reduction Il

If 1d(p1) # 1d(p2), but there exists J € (Z>()" such that
v :=1d(py) = 97 1d(p>), then

di—1 aJ

sep(p2) p1 — init(py) v P2

is either constant or has a leader which is ranked lower than v
(because 8” p, has degree one in v.)

If no J € (Z>o)" exists such that 1d(py) = 9 1d(p2), then no reduction
of p1 modulo p» is possible.

This reduction process can be adapted so as to eliminate any
occurrence (in sufficiently high degree) of symbols (uk), which are
leaders or derivatives of leaders of py, ..., ps € R in a given differential
polynomial p € R.

We say that p € R reduces to zero modulo py, ..., ps € R and their
derivatives if p can be reduced to the zero polynomial in this way.
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Simple differential systems |

A system of partial differential equations and inequations
p'I:O""’pS:O’ Q17£07---aQt750, (sthZZO) (1)

where py, ..., Ps, G1, - - ., G: are non-constant differential polynomials
in R, is said to be simple (with respect to ) if the following conditions
are satisfied.

@ The leaders of py, po, ..., Ps, G1, O, - .., Qr are pairwise different
(triangularity).

Q Letvy = vo = ... = vk be the elements of ©u which effectively
occur in the differential polynomials py, ..., ps, @1, - .-, G- We
consider (1) as a system of polynomial equations and inequations
invy, Vo, ..., V.
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Simple differential systems |l

Ifre{pi,...,ps,q1,--.,q:} has leader vy, thus is a polynomial
r(ve, Va1, - .-, V), then we require that for every solution
(ay,ap,...,ax) € CK of (1) the polynomial r(vy, as 1, @42, ..., ax)
has the same degree in v, as r(vy, Vo1 1,..., V) and has no

multiple roots.
Equivalently, the initial of r and the discriminant of r with respect
to v, do not vanish on the solution set of (1) in Ck.

© The differential consequences of p1 =0, 0> =0, ..., ps =0
contain all integrability conditions of this PDE system, i.e., the
cross-derivative of each pair of distinct equations whose leaders
involve the same unknown function reduces to zero modulo p;,
.., ps and their derivatives (passivity / involutivity or formal
integrability).

© No reduction of g4, o, ..., g; is possible modulo py, po, ..., pPs
and their derivatives.
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Thomas decomposition

Let S be a system of partial differential equations and inequations,
defined over R.

A Thomas decomposition of S (with respect to ) is a finite
collection of simple differential systems Sy, ..., S,, defined over
R, such that the solution sets of Sy, ..., S, form a partition of the
solution set of S.

The method outlined above allows to compute a Thomas
decomposition for any differential system S as considered above, with
respect to any ranking >, in finitely many steps (Baechler, Gerdt,
Lange-Hegermann, Robertz’12).

However, a Thomas decomposition of a differential system is not
uniquely determined in general. The relevance of simple differential
systems and the decomposition of a general differential system into
simple differential systems is explained by the following theorem.
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Characterization of vanishing ideal |

Theorem (Robertz’14)
Let a simple differential system S be given by

p1:O7 R pS:07 Q1750, R} qf#ou (SatEZZO)

where ps, ..., Ps, Q1, ---, Gt € R. Let E be the differential ideal of R
which is generated by p1, po, ..., ps. Moreover, let q € R be the
product of the initials and separants of py, po, ..., ps. Then the
differential ideal

E:q*° ={peR|q' peEforsomercZsy}

is equal to the set of differential polynomials in R which vanish under
substitution of any analytic solution of S. In particular, it is a radical

differential ideal. A differential polynomial p is an element of E : q*° if
and only if p reduces to zero modulo p1, ..., ps and their derivatives.

V.
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Characterization of vanishing ideal Il

Corollary

Let S be a simple differential system as in the above theorem. For
eachk e {1,...,m} let 9’1, 9%z, ..., 9%, where Jy; € (Z>0)",

nk € Zso, be the differential operators such that 9% uy = 1d(p; ) for
some ji € {1,...,s}. Due to the characterization of the vanishing ideal
for S, the set of principal derivatives

m
consists of those elements v € ©u for which there exists an equation
with leader v that is a consequence of S. We refer to the elements of
the complement ©u \ P as the parametric derivatives. Note that

ld(q;)) e ©u\ P forallj =1, ..., t because of the properties of simple
systems.

{07 0% u | J € (Z0)"}

m C»
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Implementation

@ The differential Thomas decomposition algorithm implemented as the
Maple package TDDS (Thomas Decomposition of Differential Systems)

@ Programming language: Maple 11 to Maple 2018

@ Downloadable from:
https://wwwb.math.rwth-aachen.de/thomasdecomposition/index.php

@ Licensing provisions: GNU LPGL license
@ Included as a library module in Maple 2018

@ The built-in algorithm is based on pseudo-division of differential
polynomials, as in Euclid’s algorithm, with case distinctions according to
vanishing or non-vanishing leading coefficients and discriminants,
combined with completion to involution for PDEs. Since an enormous
growth of expressions can be expected in general, efficient versions of
these techniques need to be used, e.g., subresultants, Janet division,
and need to be applied in an appropriate order. In addtion, factorization
of polynomials, while not strictly necessary for the method, should be
utilized to reduce the size of expressions whenever possible.
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Y Consistency check

:> restart;

|> with(DifferentialThomas) :

| > ComputeRanking ([x,y], [u]):

> Eql:=[u[0,1]*u[1,0]+u[1,0]+1,u[2,0]*u[0,0]-u[0,1]"2+u[0,0]];

Egl:= HD= 14 g + i g —+ 1 HDEDHE_D — r%.-l -+ HD= D} [§8)]
> TD:=DifferentialThomasDecompesitien(Eql, []);
=] 1z

:This shows that system Eql is inconsistent.
> Eg2:=[u[0,1]*u[1,0]+u[1,0]+1,u[2,0]*u[0,0]-ul0,1]*2-ul1,01];

Eq2:=[uy gy oy o+ Loty puy o= = o] L3
[> TD:=DifferentialThomasDecomposition (Eq2, [1) ;
TD := [ DifferentialSystem | 4

;Th:is shows that system Eq?2 is consistent.
> map (print@JetList2Diff ,DifferentialSystemEquations (TD[1])) ;

@ o @
[E H(L)‘)] [ P rf(m‘)) + g uxy) +1
[l : [l 2
(5 utxn) +(grutxn] -1
| [ GES
[ Namely, there is a non-empty set of equations in the output simple system.
> Bg3:=[uf0,1]*u[1,0]+ull,0]+1,ul2,0]*u[0,0]-u[0,1]"2-ufl,0]+a[0,0]*u[0,0],a[1,0],a[0,111;
| Eg3:= [HDrlill_D‘Ff!l_D‘F LHD,U“D.D+:10,0“2.07“20.17“1_.0’51,0’50.1] (1.6)
;Eq3 is the extension of Eq2 with the constant (parameter) 'a'.
| > ComputeRanking ([x,y],[[ul,[al]):

> TD:=DifferentialThomasDecomposition (Eq3, []1) ;
TD := | DifferentialSystem | (1.7)
[> op(PrettyPrintDifferentialSystem(TD[11)) ;

*[% H(L)‘))B - [a%f!(w')]z -2 [% H(L)‘)J —1=0 [% H(x,y)] [% rf(m‘)) + ;7 u(xy) +1=0alxy) =0 uxy) =0 (1.8

iThe last equation in the output system shows that consistency holds if and only ifa=0.

Gerdt, Lange-Hegermann, Robertz Thomas decomposition of PDE: PCA 2018 18/23



Y Computation of Lagrangian constraints (Eq.8.1, A. Deriglazov. Classical mechanics,
Hamiltonian and Lagrangian formalism. Springer, Heidelberg, 2010)

:> restart;

| > with(DifferentialThomas) :

The below application of the differential Thomas Decomposition for this problem taken from V.P.Gerdt, D.Robertz, Lagrangian constraints and
| differential Thomas decomposition. Advances in Applied Mathematics. 72. 113-138. 2016
> ivar:=[t] ;dvar:=[qgl,q2];

var = [t]
dvar = [gl, ¢2] 3.1
[> computeRanking (ivar,dvar) ;
| Construction of an appropriate ranking
var = [q!l, 92 qly qZD] 3.2)
B L:=q2[0]*2%ql[1]142+ql[0]*2%q2[1]*2+2%ql[0]*g2[0]*ql [1]1*q2[1]+gl[0]*2+g2[0]"2; # Lagrangian

EL:=map (a->PartialDerivative (diff(L,a[1]) ,t)-diff(L,a[0]) ,dvar); # Euler-Lagrange equations

) ) 2 2
L= qlyq2] +2qlya2yqlyq2; + q2yqi] + qly + g2

2 2
EL = [291,92,q2, + 41, a2,¢2, + 21,92} — 20l 2 a1y 02, + 4l aly a2, + 2alyaly a2y — 2a2 @3
[> TD:=DifferentialThomasDecomposition(EL, []) ;
TD = [ DiffereniialSystem, DifferentialSvsiem, DifferentialSvstem | (3.4)

[> PrettyPrintDifferentialSystem(TD[1]);

2

qftr)+qztrJ:n,zqz(r)[ () =1=0.020 #u} 39
:the first expression is the local constraint q1(t)+q2(t)=0

> PrettyPrintDifferentialSystem(TD[2]) ;
2

{qftrl g2 =0.242(1) 0] ~1=0.g20 %0 e
:Lhe first expression is the local constraint q1(t)-q2(t)=0
> PrettyPrintDifferentialSystem(TD[3]);
[g1() =0, ¢2(1) = 0] 37

L iLhe complementary constraints complementary to those in (3.5) and (3.6)
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A Kjole—Hopf transformation (Ex.3.8, T. Baechler, V. Gerdt, M. Lange-Hegermann, D. Robertz.
Algebraic Thomas decomposition of algebraic and differential systems. Journal of Symbolic
Computation, 47, 1233-1266, 2012)

[We demonstrate how to study the Cole Hopf transformation by using the differential Thomas decomposition.
[> restart;

[The claim is that for every non-zero analytic solution of the heat equation

[> etall,01+etal0,21=0;

My g+ My =0 D
[the function defined by
> zeta=etal0,1]/etal0,0];
Mo,y
= o 7.2)
No,0

[is a solution to Burgers' equation

> zeta[l,0]+zeta[0,2]+2*%zeta[0,1] *zeta[0,0]=0;
28y 1 S0t G2ty 0=0 73
[> with(pifferentialThomas) :

‘We define a ranking on the ring of differential polynemials in eta and zeta such that any partial derivative of eta is ranked higher than any partial
| derivative of zeta
> ComputeRanking([t,x], [[eta], [zeta]]):
[We define the differential system which combines the heat cquation in eta and Burgers' cquation in zeta:

> cH := [etall,0]+etal0,2], eta[0,0]*zetal0,0]-etal0,111;

CH = [N g 3T 9%g,0~ Mo, 1] 4

[> map (print@JetList2Diff,CH) :

s 2
e+ ()
o

o
()T - [ 2= (e d
n(ex) Tt x [av”’”] 7.5
[We also include the assumption eta <> 0 s an inequation
> TD := DifferentialThomasDecomposition(CH, [etal);
TD = [ DifferentialSystem] (7.6)

[> PrettyPrintDifferentialSystem(TD[1]) ;

M50 605" 4 (80 (55 206 | 5000 =000 £ — (0

2 a
e e R (X
[

Lrx)=0n(rx) =0

The simple system of the resulting Thomas decomposition allows to read off that zeta as defined above is a solution of Burgers' equation if etais a

solution of the heat equation, which proves the original claim. Conversely, since the above simple differential system is consistent with the heat
equation for eta by construction, we conclude that for any solution zeta of Burgers' equation there exists a solution eta of the heat equation such that the
Cole-Hopf transformation of eta s zeta.
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Singular solution of ODE
ination for PDEs. Lecture Notes in Mathematics, Vol. 2121. Springer, Cham, 2014

Ex.2.2.60, D. Robertz. Formal Algorithmic Ei

restart;
with(DifferentialThomas) :

G
[This example demonstrate that the differential Thomas decomposifion naturally distinguishes cases so that singular solutions are separated from the general solution
> ivar :- [t];
L var = [1] @3
[> dvar := [ul;
dvare= [u] ®4)
ComputeRanking (ivar, dvar):
7e consider the following nonlinear ODE:
[> L := [diff (u(t),t)*2-4¥EAdiff (u(t) ) -dku(t) +85EA2] ;
2
¢
I L-l(;m;]] "”(E""]]"‘”"H“] ©5)
[> TD := DifferentialThomasDecomposition(L, []):
9.5)

TD = | DifferentialSystem, DifferentialSysten]
e first simpie system of the Thomas dscomposition yields the gensral solution of the given ODE:
> 51 :- PrettyPrintDifferentialSystem(TD[1]):
si= l(dr ;m]] 741( w]] —d4un) +87=0,F —uln) sD] ®n

[The inequation contained in the first simple system is 4 consequence of the assumption that the separant of the given ODE does not vanish
e second simple system defines a singular solution, which is a solution of the given ODE for which the separant vanishes.
> 52 := PrettyPrintDifferentialSystem(TD[2])

— [A—ui=0] 9.8)

srtion e plot fex mectoies elongin to the ga.leﬂl solution given bySl as well as the singular solution given by $2 in the same diagram.

map (8-32+ ((tre) 12+4072) [575

=[2010-57+30,2 (1—4 +32,2 (1317 +13.1\172] +8.2(-1+0 42242+ 17 42,2 (1427 48,2 (1437 + 18,2 (1447 4322 14 5)7+50.2 01 09
+6) 72,2 0+7) 74982 (r+8)7+128,2 (1 +9)7 +162,2 (r+10) +200]

[> plot([t*2, op(P)], t=-30..20);

2500

2000

1300

1000

-30

ote that the singular solution is en envelope of the gensral solution.
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¥ An example of an ODE provided by E. Cheb-Terrab

[This example demonstrates different bebavior of the packages Differential Thomas, Differential Algebra and DEtools.
> restart;
> with(DifferentialThomas) :

>
[> ivar := [x]:

har = [x]
[> dvar := [v]:

dvar = [y]

[> ComputeRanking(ivar, dvar);
[> L := [(2%y (x)#Qiff(y (x) X,xX) mrr:;(x: X)~2) %3 + 324ALTE(Y (X)X, %) # (XAALEE (7 (x) ,3,X) - ALEE(y(x),%))*3];

L—I[l\m][ :j ml]—(%ml]ﬂ

> LL := Diff2Jetlist(L);

L= [ (2593 =37) 320 (rry =)
[>T := DifferentialThomasDecomposition (LL, []):

| — [ DifferentialSystem, )
[We obtain a Thomas decompsition for the given ODE with five simple differential systems.
> Prett]PrintlefersntlalSyst('l'[l]] B

& 2 3 . 2 3 1, 3 473
2 (mlxml] —%6x (7”:\]](%_\“]] +S_\'u]’(%_w:\]] —11_\-\;11(%_\m] (%_\m] +6\u](7\|:\]] (ﬁym]—(%ym]

2
+96;\(7\|;\]] (;1 _m]] 731(7\.11] [%_\'\1]]:0._\‘|J]1+h$0.—_\'u +s;¢01(3m ]—l_\'u]$0.%_\-u]$0._\u] %0,

dr dx dr
[> PrettyPrintDifferentialSystem(T[2]):
3 2

51247 (7“1]] 7.531“11(7\.11] +27y0x) (7\.1]] —d8xyix) (7”1]] 41781 (7\.11]754_\-\1]%0]

&

dr dr dv

> PrettyPrintDifferentialSystem(T[3]):

ir ] —23(x) =0, 3(x) % 0,y 485 = D]

[> PrettyPrintDifferentialSystem(T[4]);
[— $r) =0,y00) = u]
[> PrettyPrintDifferentialSystem(T[5]);
[-yx)*+8x=0]
¢ Differential Alzebra package and the command ifsimp (in Maple 2017) da not terminats on the same input in reasonable time

with(Dif ferentialAlgebra) :
R := DifferentialRing(blocks=[y], derivations=[x]):

R = differential_ring
[> RosenfeldGroebner (L, R);
Warning, computation interrupted

[> DEtools[rifsimp] (L, casesplit):
Harning, computation interrupted

>
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Conclusions

@ Differential Thomas decomposition provides a universal algorithmic tool
to study and solve systems of polynomially nonlinear PDEs which can
be enlarged with polynomially nonlinear inequations.

@ The decomposition algorithm outputs a finite set of simple (i.e. triangular,
involutive and without multiple solutions) differential subsystems whose
solutions partition the solution set of the input system.

@ The implementation of the algorithm has been done in Maple. It is freely
available and included in Maple 2018.

@ For more details on the decomposition algorithm and its implementation
we refer to the paper (and to the references therein):
V. Gerdt, M. Lange-Hegermann, D. Robertz. The MAPLE package
TDDS for computing Thomas decompositions of systems of nonlinear
PDEs. arXiv:1801.09942 [physics.comp-ph]
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